himpunan matematika

Jika S adalah suatu himpunan yang memiliki 4 buah anggota, maka kita dapat menghitung banyak semua himpunan bagian yang beranggotakan 3 elemen dengan cara mendaftar semua himpunan bagian tersebut atau dengan memakai kombinasi, C(4, 3). Karena C(4, 3) = 4, maka banyak semua anggota himpunan bagian S yang beranggotakan 3 elemen ada 4 himpunan. Misalkan S = (a, b, c, d), maka keempat himpunan bagian tersebut adalah {a, b, c}, {a, b, d}, {a, c, d}, dan {b, c, d}. Atau dengan kata lain, kita memiliki 4 cara dalam memilih 3 dari 4 anggota himpunan S tersebut tanpa memperhatikan urutan sedemikian sehingga 3 anggota tersebut semuanya berbeda.
            Akan tetapi, berapa cara yang dapat kita lakukan untuk memilih 3 anggota dari himpunan S tersebut tanpa memperhitungkan urutan jika pengulangan diperbolehkan? Agar mudah untuk membayangkannya, kita dapat menganggap anggota-anggota S tersebut sebagai kategori dari objek-objek yang akan kita pilih.    Misalkan, jika kategori-kategorinya dilabeli dengan a, b, c, dan d dan tiga anggota dipilih, ada kemungkinan kita akan memilih 2 anggota dalam kategori a dan 1 anggota dari kategori d, atau tiga anggota yang kita pilih semuanya masuk kategori b, atau tiga anggota yang kita pilih masing-masing masuk dalam kategori a, c, dan d. Secara berturut-turut kita dapat menotasikan pilihan-pilihan tersebut sebagai [a, a, d], [b, b, b], dan [a, c, d]. Perhatikan bahwa, karena urutan diabaikan maka [a, a, d] = [a, d, a] = [d, a, a]. Selanjutnya, perhatikan contoh berikut.
            Contoh 1: Kombinasi-r dengan Pengulangan Diperbolehkan
Tulislah semua kombinasi-3 dari {a, b, c, d} sedemikian sehingga pengulangan diperbolehkan.
Pembahasan Karena urutan dari anggota yang dipilih tidak diperhatikan, maka sebaiknya kita menulis kombinasi-3 tersebut dengan urutan menaik, untuk memastikan bahwa tidak adanya kombinasi yang sama ditulis lebih dari satu kali.
[a, a, a], [a, a, b], [a, a, c], [a, a, d]
[a, b, b], [a, b, c], [a, b, d]
[a, c, c], [a, c, d], [a, d, d]
[b, b, b], [b, b, c], [b, b, d]
[b, c, c], [b, c, d], [b, d, d]
[c, c, c], [c, c, d], [c, d, d]
[d, d, d]

Jadi, terdapat 20 kombinasi-3 dari {a, b, c, d} sedemikian sehingga pengulangan diperbolehkan.

Komentar

Postingan Populer